Shell model description of the spectroscopic properties of ²⁵Al-²⁵Mg mirrors at excitation energies of astrophysical significance

M. Bouhelal¹, A. Selim¹, and F. Haas²

¹ LPAT, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria

² IPHC, CNRS/IN2P3, Université de Strasbourg, F-67037 Strasbourg, Cedex2, France

The 25 Mg and 25 Al mirror nuclei play a critical role in nucleosynthesis processes, such as in slow neutron capture process (s-process) and rapid proton capture process (r-process), respectively. The (α ,n) reaction on 22 Ne producing 25 Mg is the main neutron source in massive stars [1]. In addition, 25 Mg is the origin of the formation of two other nuclei in stellar environments, the proton capture on 25 Mg, forms *the rare long-lived radio-isotope* 26 Al [2,3] and the neutron capture on 25 Mg, forms 26 Mg [4]. The J^{π} assignments of 25 Mg has a significant importance in determining the previous astrophysical reactions rates. Similarly, The (α ,p) reaction on 22 Mg producing 25 Al [5] plays a critical role in XRB models. The astrophysical 25 Al(ρ , γ) 26 Si [6] reaction represents one of the key remaining uncertainties in accurately modelling the abundance of radiogenic 26 Al ejected from classical novae. Theoretical results for 25 Mg and 25 Al mirror nuclei employing our PSDPF effective interaction [6], including excitation energies, spin-parity assignments, and transition probabilities, have been systematically compared with available experimental data. Our interaction describes quite well these observables in both studied nuclei that are crucial in calculating the above astrophysical reaction rates. We will present in our contribution a detailed discussion of our work.

- [1] S. Ekström, Front. Astron. Space Sci. 8 (2021) 617765.
- [2] https://www.physics.purdue.edu/ams/ams/
 26Al.php#:~:text=Aluminium%2D26%20(26Al),a%20fission%20reaction%2C%20called%20sp allation.
- [3] F. Strieder et al., Phys. Lett. B 707 (2012) 60.
- [4] B. Beta et al., Astrophys J 533 (2000) 260.
- [5] J. Hu et al., EPJ Web of Conferences 260 (2022) 05001.
- [6] C. B. Hamill et al., Eur. Phys. J. A 56 (2020) 36.
- [7] M. Bouhelal et al., Nuclear Physics A 864 (2011) 113.